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Abstract

Mathematical beading can be utilized for the construction of aesthetically pleasing sculptures inspired by a rich
variety of shapes and forms in the nanoworld. Depending on the shapes of beads utilized, the resulting bead sculptures
can be classified into two broad categories: (1) hard-sphere open packing models based on spherical beads, which
include finite fullerenes, carbon nanotubes, carbon nanotori, curved three-dimensional graphitic surfaces, and space-
filling tetrahedral zeolite structures and many inorganic coordination complexes such as extended metal atom chains;
(2) truss-like frameworks constructed from tubular bugle beads, which can mimic the polyhedral representations of
microscopic inorganic structures and many macroscopic space frames. Moverover, the hard-sphere open packing
model for any polyhedral hydrocarbon of general formula Cs,Ha, can be achieved by cross-linkings of n pre-
made five-bead chains without using any beading process. The assembly processes of certain symmetric polyhedral
molecules, such as three Platonic hydrocarbons including tetrahedrane, cubane, and dodecahedrane, are similar to
solving interlocking puzzles. Hence, these bead-chain models can also be regarded as a new type of take-apart
put-together puzzle.

Introduction

Chemistry is the scientific discipline that deals with compositions, structures, properties of substances and the
changes they undergo. Three dimensional structures depicting the arrangements of atoms inside a molecule
or the larger-scale hierarchical organization of constituents of nanomaterials are particularly important for
a thorough understanding of their physical and chemical properties. Through the advancement of various
experimental techniques such as X-ray diffraction, electron microscopy, a large variety of structures and
organizations of molecules, aggregates and nanomaterials have been determined. Model building, which has
been proven to be a powerful approach for unravelling many important molecular structures in the past, also
provides a simple way for understanding spatial relationships for both novices and experts alike.

In this paper, we describe two general approaches to the construction of bead models of molecules
and nano structures. [1, 2, 3] In the first approach, we apply systematically the standard right angle weave
(RAW) technique (a.k.a. figure-eight stitch) commonly used in the beading community for the construction
of a large variety of sculptures inspired by nanoscale molecular structures. We have successfully built many
interesting bead sculptures including the 3-connected 3D nets such as cage-like fullerenes, carbon nanotori,
helically coiled carbon nanotubes, carbon torus knots, high-genus fullerenes, hyperbolic fullerenes, and
triply periodic minimal surfaces, together with many 4-connected 3D nets such as diamond, ices, zeolites,
and silicate minerals. [3, 4]

These bead models based on spherical beads can be regarded as the macroscopic realization of valence
sphere models for the corresponding molecules, in which the spatial arrangement of spherical beads approx-
imates the three-dimensional electron density distributions. The hard-sphere repulsion among beads and
elastic cords that hold beads together mimics the nature of chemical bonds in alkanes, fullerenes, zeolites
and many other nanostructures. The saturation and directional character of chemical affinity fall out natu-
rally in bead models. Moveover, constructing the bead model of a molecule with mathematical beading can



be regarded as an analog computation. The result of the computation is the molecule’s approximate three-
dimensional electron density profile. [5, 6] In addition to spherical beads, we have also utilized tubular bugle
beads for constructing many skeletal polyhedral models that can be regarded as physical models of micro-
scopic inorganic structures and macroscopic octet-truss systems. The nodes in these skeletal structures can
have connectivity or coordination numbers up to twelve, which is common in many octet-truss structures.
(7, 8]

The second approach for the construction of bead models involves no beading at all. Constructing a
bead sculpture with mathematical beading technique is usually a slow and tedious process. One needs not
only to become familiar with the basic beading techniques, but also to know the algorithmic details for a
specific sculpture. While the eventual completion of an aesthetically pleasing sculpture may prove that the
effort of the whole process is worthwhile, many repetitive beading steps require a great deal of patience
and practice. Therefore, it would be interesting if one can avoid the beading processes, but still keep the
essential idea of the hard-sphere open packing in the bead models. Indeed, it is possible to simplify the
complicated task of beading for certain molecules into two stages: First, the preparation of the simplest
possible beaded structures, namely one-dimensional chains that consist of n beads; second, the assembly of
these pre-made bead chains through suitable cross-linkings. The resulting cross-linked bead-chain models,
if correctly manipulated, can be utilized to represent valence sphere models of various linear, ring-like, tree-
like, and polycyclic alkane molecules, together with many inorganic systems such as perovskite, and so
on.

A particularly interesting family of molecules that can be constructed by bead chains is the polyhedrane
compound, a cage-like hydrocarbon molecule of general formula Cs,,Ha,,, which has a skeleton correspond-
ing to a polyhedron. A few examples are tetrahedrane, cubane, dodecahedrane, and related prismanes.
Moreover, the construction processes for these symmetric compounds have a strong resemblance to solving
nontrivial interlocking puzzles such as Burr puzzles: namely starting from a given set of bead chains, each
containing a specific number of beads. The goal is to assemble them into a target molecular structure through
a sequence of cross-linkings. For instance, two bead chains, each consisting of five beads, can be assembled
into the valence sphere model of a tetrahedrane molecule, while four five-bead chains can be put together
into the valence sphere model of a cubane molecule. We call this new kind of puzzles as Bead-Chain Puzzles
(abbreviated as BC-Puzzles). [9]

Techniques and Algorithms: Degree Three Polyhedra

In this section, we describe the basic beading techniques and procedures for making a bead model. [5, 10]
First of all, one needs to prepare the raw materials needed for constructing beaded molecules which are just
beads and threads (fishing lines or elastic cords). Beads are made in many materials and come in different
colors, textures, and sizes ranging from several millimeters to about a centimeter and usually contain a thin
channel for stringing. The sizes of beads we used for constructing bead sculptures in this paper are mostly
around 6 mm to 10 mm. Every bead sculpture shown here is constructed by beads with the same size. In
principle, the same beading technique be easily generalized to make sculptures consisting of different sizes
of beads. In order to construct a robust bead sculpture, it is crucial to choose threads with right thickness.
A simple criteria for a degree three (cubic) polyhedral graph such as a fullerene is to choose the thickness
of threads in such a way that they can go through the thin channel of beads at least three times, but no more
than four times. The reason for this choice will become clear after we describe the techniques for making a
bead sculpture.

Figure 1 gives the complete instruction on using the RAW technique to make a beaded cube which
consists of twelve beads sitting on the midpoints of twelve edges. The whole procedure has six steps and
each step consists of creating a four-member ring that represents a square face of a cube.
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Figure 1: Constructing process of a beaded cube illustrated by using Schlegel diagrams. At each step, blue
circles denote the beads just fished and green circles the beads just added. The dark green circle corresponds
to the last bead just added and is labeled by the largest numeral. It is also the position where the crossing of
two ends of thread take place and will be denoted as the crossing bead.

1. (a) String four beads (#1 ~ #4) in the middle of the thread.

(b) Take the right end and insert it through the furthest bead (#4) in the opposite direction and pull
the thread tight. This makes the first square. For convenience, beads are labeled in ascending order
according to the sequence they are added.

2. (a) Add three beads (#5 ~ #7) on the left end of the thread.

(b) Take the opposite end and insert it through the furthest bead (#7) in the opposite direction and
pull the thread tight. This makes the second square. The first two rings look like a figure eight.

3. (a) In order for the next square to be connected with the two previous existing rings, the thread must
go through bead #1 in the neighboring ring. Insert the end of the thread at the junction through
the closest bead (#1)-this is called fishing and this end is denoted as the fishing end or fishing
line. Notice that one will always add beads to the other end (non-fishing end) in the following
step. Thus, the fishing and non-fishing ends will always alternate and both ends should decrease
in length roughly equally.

(b) Add two beads on the non-fishing end.

(c) Take the other end and insert it through the furthest bead (#9) in the opposite direction and pull
the lines tight. This makes the third square. This structure can be viewed as a hemisphere now.

4. (a) Go fishing (#2).

(b) Add two beads (#10, #11) on the non-fishing end.

(c) Take the other end and insert it through the furthest bead (#11) in the opposite direction and pull
the thread tight. This makes the fourth square.

5. (a) Go fishing (#3, #5).

(b) Add the last bead (#12) on the non-fishing end.



(c) Take the other end and insert it through bead #12 in the opposite direction and pull the thread
tight. This makes the fifth square.

6. Go fishing (through beads #6, #8, and #10) and complete the whole structure.

The whole procedure can be summarized in a tabular beading form as given in Table 1. At each step,
decision should be made on which neighboring beads needs to be fished first, and then beads can be added
to the non-fishing end in order to keep the beading following along the spiral direction. Although we usually
view the spherical beads as edges of the corresponding polyhedron, one can also connect the center of
neighboring beads and visualizes the bead model as a rectified polyhedron, in this case, a cuboctahedron. If
we follow the RAW technique and keep attention to pulling tight two ends of the thread around the crossing
bead at the end of each step, a robust beaded structure will be created automatically.

Step 7

# of beads fished, f;

# of beads added, n;

# of beads in a ring, p;
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Table 1: Tabular beading form for creating a beaded cube. The last row corresponds to its spiral face-
Hamiltonian path, which can be codified by the sequence “444444”.

According to the many workshops we have given, the most difficult step for beginners in constructing
a beaded structure is fishing. The trick is to examine two ends of the thread that just coming out of the
crossing bead every time one just finished a ring. Notice that the crossing bead at each step is always the
last bead that has been just added! In Figure 1, a blue line segment is used to denote the channel direction
of the crossing bead at the end of each step. The two ends of this segment correspond to two neighboring
vertices of the degree three polyhedron. For instance, when the square 2 (the second step in Figure 1) is
just complete, the particular end of the line that points to the direction of the solid blue circle must be the
fishing line, while the other end pointing to the vertex denoted by empty blue circle has one edge without
any bead on it must correspond to the non-fishing line. So the rule for deciding whether fishing should be
performed or not is to check if the corresponding vertex (as indicated by the solid blue dot in the second step
of Figure 1) is surrounded by three beads. If it is surrounded by three beads, go fishing, meaning that the
cyan circle labeled by #1 as shown in the third step in Figure 1 should be fished before adding new beads.

The same beading method can be easily extended to other degree three polyhedron that contains a spiral
face-Hamiltonian path, which visits each face once and only once along the spiral. For instance, a spiral face-
Hamiltonian path exists for the great rhombicuboctahedron and can be codified as “8 46464646 84848484
64646464 8. Without employing its Schlegel diagram or even the corresponding tabular beading form, this
code already gives enough information for creating its bead model. One simply follows this code and start to
construct a bead model by making one polygon after another either clockwise or counterclockwise. Special
attention has to be paid to fishing before adding new beads at each step to ensure that the condition of a
degree three polyhedron is satisfied. When the last ring is formed, an overall structure that gives a faithful
three-dimensional bead representation for the corresponding polyhedron will be automatically created. In
Figure 2, we show the bead models for four degree three polyhedra.

More generally, the algorithm for making any degree three polyhedron that contains a spiral face-
Hamiltonian path specified by the code pi1ps...pn, where p; is the number of sides of the ith polygon
along the spiral, can be written as follows:

1.2=1
(a) Add ni(= p1) beads to the string.



Figure 2: Bead models for dodecahedron, truncated octahedron, great rhombicuboctahedron, and great
rhombicosidodecahedron.

(b) Form a ring with p; beads by crossing both ends of the string at the crossing bead labeled by the
largest numeral (i.e. the furthest bead or the last bead just added).

2.i=1+1
(a) Fishing: f; = 0, where f; is the number of beads fished at the step .
i. Fish the next bead if the corresponding vertex is saturated (or surrounded) by three beads,
fi=Jfi+1
ii. Repeat 2(a)i until all neighboring saturated vertices are fished.
(b) Add n; = p; — f; — 1 beads to the non-fishing end of the string.

(c) Form a ring that contains p; beads (p;-gon) by crossing both ends of the string at the bead labeled
by the largest numeral.

3. Repeat 2 until all polygons are formed.

One can easily see that each bead is stitched exactly two times if the corresponding graph contains a face-
Hamiltonian path. Therefore, one must choose the thickness of a thread such that it can go through each
bead at least two times. However, without further handling of the remaining thread still outside the bead
sculpture, the bead sculpture just finished can loosen up easily. The trick in preventing this happening is
to string the remaining part of threads lying outside into the bead structure again until the whole sculpture
becomes tightly bound. As a result, the channels of some beads will be filled by threads three or even four
times.

Bead Sculptures: Curved graphitic structures

The first approach to the construction of bead models is based on the RAW techniques of mathematical
beading introduced in previous section. According to the coordination numbers, there are three different
broad families of nanostructures that can be constructed using the mathematical beading technique. The first
family consists of any cage-like polyhedral fullerene, which is a degree three (cubic) polyhedral graph with
only pentagonal and hexagonal faces, and the generalization to various curved graphitic structures that allow
non-hexagonal rings other than pentagons. For simple cage-like polyhedral fullerenes C,, without holes (i.e.
g = 0, where g is the genus), the number of pentagonal faces is always 12, the number of hexagonal faces is
(v —20)/2, and the number of edges (or beads) is 3v/2. The bead model of a fullerene with v carbon atoms
comprises exactly 3v/2 beads since beads stand for chemical bonds instead of atoms.

To make any fullerene, weave face by face with beads using the RAW according to its pentagonal spiral
code which specifies a spiral face-Hamiltonian path that visits each polygonal face once and only once. For
instance, the spiral code for Cep, [1 79 11 13 15 18 20 22 24 26 32], gives the positions of twelve pentagons



in the spiral sequence of twelve pentagons and twenty hexagons. By using a prescribed spiral code, one can
create a realistic bead model of any cage-like fullerene.

In addition to the cage-like fullerenes, beads can also be used to construct other more complicated
graphitic structures such as carbon nanotori, high-genus fullerenes, and so forth. According to our experi-
ence, beads can be used to construct robust physical models of simple and complicated carbon nanostructures
that are otherwise inaccessible. In Figure 3, we show a variety of curved graphitic structures which include
finite and infinite 3-connected graphitic surfaces, starting from the simplest Cg to carbon nanotori, helically
coiled carbon nanotubes, carbon torus knots, high-genus fullerenes, and triply periodic minimal surfaces
with negative Gausssian curvatures. [11]

Figure 3: Curved graphitic structures. First row: Buckyball (Cgp), endcapped carbon nanotube Cgg, fullerene
with lollipop shape, HIV virus, carbon nanotorus Cj,¢; Second row: curved nanotori, helically coiled carbon
nanotube, carbon trefoil knot, dodecahedral high-genus fullerene, genus-3 carbon tetrahedron; third row:
fused Cgo cube, carbon tetrapod, single periodic minimal surface, I-WP surface, (1, 0)-P-surface; Fourth
row: (1,1)-P-surface, (2, 1)-P-surface, Chen-Gackstatter surface, a genus-2 surface, intersection for four
graphene sheets with four lines of sp3 defects.

Bead Sculptures: Zeolites and tetravalent graphs

The second family that can be constructed by mathematical beading comprises tetravalent periodic struc-
tures with the degree (or valency) of a vertex equal to four, which include diamond, ices, clathrate hydrates,



zeolites, and many minerals. [12, 13, 14] In Figure 4, we give a few examples of bead models correspond-
ing to various zeolite frameworks. Zeolites are porous aluminosilicates, widely used as efficient catalysts,
adsorbents, and ion exchangers in petrochemical industries and in our daily life. Mathematicians have pre-
dicted that millions of hypothetical zeolite structures are possible. However, only 245 structures have been
discovered and synthesized so far.

Figure 4: Zeolites specified by 3-letter Framework Type Codes. First row: SOD (Sodalite), LTA, FAU,
EMT, RHO; Second row: KFI, AST, TSC, ATN, BCT; Third row: LTL, MOZ, SAS, ABW, BEC; Fourth
row: MEP, MTN, DOH, MWW (MCM-22), SSF.

Zeolites are based on the primary tetrahedral building unit, TO4, where the central tetrahedrally bonded
atom, T, is usually either a silicon or aluminum cation, surrounded by four oxygen anions. By linking these
tetrahedra together, it is possible to build larger building units such as truncated octahedra, dodecahedra, etc.
When these building units are linked together to form a zeolite framework, they characteristically yield peri-
odic cavities and channels throughout the structure. It is a challenging work to construct all these structures
with beads since the beading is an inherently slow sequential process. Right now, we have succeeded in
making bead models for more than forty zeolite framework types.



Bead Sculptures: Inorganic structures with valencies higher than four

We have also applied successfully the technique of mathematical beading to the construction of skeletal
polyhedral models with the degree of a vertex higher than four for many nanoscale inorganic structures or
macroscopic octet-truss systems by using long tubular bugle beads. [7, 8] If bugle beads with the same
length are adopted, all eight convex deltahedra can be constructed and the resulting structures are rigid as a
consequence of the Cauchy rigidity theorem. Among these convex deltahedra, tetrahedron and octahedron
are two most common structural motifs occurring in the molecular transition metal chemistry, inorganic
solids, and many mineral structures.

Figure 5: Skeletal truss models. First row: tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyra-
mid, snub disphenoid; Second row: Triaugmented triangular prism, gyroelongated square bipyramid, Icosa-
hedron, Boerdijk-Coxeter helix; Third row: Kaleidocycle with eight regular tetrahedra, and Kaleidocycle
with 14 gyroelongated square bipyramids, octet-truss consisting solely of octahedra, hexagonal close packed
octet truss, cubic close packed octet truss; Fourth row: Anatase TiO; structure, elevated icosahedron, com-
pound of icosahedron and 20 octahedra, compound of icosahedron and rhombic hexecontahedron, frequency-
4 Mackay icosahedron.

Other deltahedra can sometimes become important in nano world. For instance, the B, motifs in the
extended structure of a-rhombohedral boron are found to be icosahedra. Many larger molecular structures
can be described by linked deltahedra through sharing common vertices, edges, or faces. If bugle beads
with different lengths are used, a richer structural variety of skeletal polyhedral sculptures can also be built.



Figure 5 shows a few skeletal truss models for inorganic systems and space frameworks based on linking
different numbers of deltahedra.

Bead-Chain Construction Set and Interlocking Puzzles

Making a bead model for a large molecule is inherently a slow sequential process, and can take a lot of
time to complete except for certain modularizable systems which could be constructed by many people
together. In this section, we show that it is possible to create the same valence sphere models without any
beading, at least for certain molecules such as polycyclic cage-like hydrocarbon with the chemical formula
ConHap, or polyhedrane. Starting from several pre-made building blocks, the valence sphere models for
these polyhedrane molecules can be assembled through cross-linkings and the tedious beading procedure
can be avoided completely.

Consider the simplest polyhedrane, a cubane molecule with the formula CgHg. This molecule consists
of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon
atom. [15] Also there are twelve CC single bonds and eight CH bonds in this molecule. Notice that the bead
model for this molecule corresponds to its valence sphere packing model. Atoms are not explicitly shown,
while twenty chemical bonds are represented by twenty beads. To make a bead model for this molecule with
a finite number of linear bead chains through cross-linkings, the beads corresponding to eight CH bonds
must be located at chain ends. Hence, exactly four bead chains are required in order that a chain can start
from one CH bond and end at another CH bond. Hence, CH bonds are represented by terminal beads. To use
as few basic building blocks as possible, we choose 12/4 = 3 non-terminal beads for each chain. Thus, a
single type of five-bead chain is sufficient for making a bead model of a cubane molecule. Interestingly, the
assembly process of a cubane model from four five-bead chains is nontrivial since the many possible ways
of making cross-linkings among four five-bead chains exist. In many ways, assembling the bead model of a
cubane molecule bears a resemblance to solving an interlocking puzzle. Therefore, we call this model as the
BC-Cube (Bead-Chain Cube) puzzle as shown in Figure 6 and 7a.
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Figure 6: (a) Cross linking of two bead 5-bead chains. (b) A BC-Cube can be assembled from four five-bead
chains through eight cross linkings.

Figures 7b and 7c shows the bead-chain models of the other two Platonic hydrocarbon molecules,
namely tetrahedrane and dodecahedrane, which can be assembled from two and ten five-bead chains, respec-
tively. Bead-chain models for two of seven Archimedean polyhedranes, truncated tetrahedrane (CjoH1,) and
truncated icosahedrane (CgoHgp), are shown in Figures 7d and 7e, respectively. More generally, the carbon
skeletons of polycyclic hydrocarbon with formula Co,Ho, can be regarded as cubic graphs in which all
vertices have degree three. If we ignore CH bonds, each carbon atom is bonded exactly to three neighboring
carbon atoms. A cross-linking between two bead chains introduces a local tetrahedral arrangement for four
beads. To satisfy the requirement that carbon atoms are located on the polyhedral skeleton and hydrogen
atoms pointing outward, one needs exactly n five-bead chains for making a bead model of the corresponding
polyhedrane molecule. Finding a procedure of making a bead-chain model for a polyhedrane with five-bead



) (@ () (s) ®

Figure 7: Bead chain construction set. First row: BC-Cube (CgHg) with four five-bead chains, BC-
Tetrahedron (C4Hy4) with two five-bead chains, BC-Dodecahedron (CyoH»,) with 10 five-bead chains, BC-
truncated tetrahedron (CoH,) with 6 five-bead chains, BC-Buckyball (CeoHgp) with 30 five-bead chains;
Second row: fiver isomers of CigHjg; Third row: five isomers of CioHj,; Fourth row: CigHyg, CigHis,
Perovskite structure constructed by 48 five-bead chains, close-packed tetrahedral arrangement of twenty
spheres, another isomer of CgHg that contains two triangular faces and two pentagonal faces.



chains is equivalent to finding a way to draw its skeletal polyhedron with n non-overlapping strokes and each
stroke covers exactly three edges.

Since the total number of cubic graphs grows exponentially as a function of n, there is a rich variety
of possible structures that can be constructed by this new kind of bead chain construction set. In Table 2,
we list the number of unlabeled cubic and cubic polyhedral graphs up to 22 vertices. Whenever an n-stroke
solution for a polyhedrane exists, the corresponding polyhedral bead-chain model can be constructed.

Table 2: Number of unlabeled cubic polyhedral and triangle-free cubic polyhedral graphs with 2n nodes,
withn =2,3,...,11.

Vertex 4168|1012 | 14 16 18 20 22
Cubic 112]5] 19|85 | 509 | 4060 | 41301 | 510489 | 7319447
Polyhedral | 1 | 1 |2 |5 14 | 50 233 1249 7595 49566

Moreover, if we allow cross-linkings of three bead chains at a single position, more complicated nanos-
tructures that contain local octahedral arrangements of six spheres can also be created. For instance, Figure 7r
gives a bead model for a portion of the perovskite structure that contains 4 x 4 x 4 = 64 unit cells. A total
of 48 five-bead chains with 64 triple-chain crossings are used. Finally, notice that the same four five-bead
chains, which we used for making the bead model of a cubane molecule, can also be used to make another
two interesting structures, one is a close-packed tetrahedral arrangement of twenty spheres (Figure 7s) and
another one corresponds to a different isomer of CgHg (Figure 7t)! We leave this as a puzzle for readers.

Conclusion

In conclusion, chemistry is rich with many interesting structures which can be employed for constructing
aesthetically pleasing bead sculptures. With suitable interpretations for the meaning of beads and strings,
these sculptures can model many microscopic molecular structures faithfully. More importantly, we believe
that the molecular and structural diversities at the nanometer scale can also give us inspirations for finding
new forms and shapes of sculptures and architectures.

Two different approaches for constructing bead sculptures, one by the mathematical beading and the
other through the bead-chain cross-linking, are presented in this paper. The first approach based on mathe-
matical beading can be applied to a large variety of nano structures to create fascinating bead sculptures. The
disadvantage is that the mathematical beading is inherently a slow and sequential process. Great patience is
required if one wishes to construct a bead sculpture with thousands of beads. The second approach based
on the cross-linking of pre-made bead chains involves no beading at all. We demonstrate that the valence
sphere model for any polycyclic hydrocarbon molecule of general formula Cg,Hs,, with carbon atoms lo-
cated on the nodes of corresponding cubic graph can be assembled from n linear five-bead chains through n
cross-linkings, which can be regarded as a new type of interlocking puzzle.
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