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Abstract
This is a poster for a sculptural exhibition of a class of our new space filling modular shapes. This class of shapes is
inspired by “scutoids” — shapes that were recently reported to occur in epithelial cells due to topological changes
between the extremal (apical and basal) surfaces of epithelia. Inspired from this discovery, we develop a generalized
procedure for generating space filling shapes, which we call Delaunay Lofts — a new class of scutoid-like shapes.
Delaunay Lofts are produced as an interpolation of a stack of tilings that are defined by Delaunay diagrams. Let a
stack of planar surfaces with Delaunay diagrams be given, Delaunay Lofts are the shapes that result from Voronoi
tessellation of all intermediate surfaces along the curves joining the vertices of Delaunay diagrams that define the
tessellations. Combined with the use of wallpaper symmetries, this process allows for an intuitive design of complex
space filling shapes in 3-space.

(a) One tile. (b) Two tiles. (c) Three tiles. (d) Four tiles. (e) Seven tiles.

Figure 1: An example of a single Delaunay Loft tile that can fill both 2.5D and 3D space. This tile is created
as an interpolation of two layers of tilings, namely (1) a square tiling; and; (2) another square tiling, which
is a translation of the first square tiling. The interpolating control curves are straight lines.

1 Introduction

A space filling shape is a cellular structure whose replicas together can fill all of space watertight, i.e. without
having any voids between them [11], or equivalently, it is a cellular structure that can be used to generate a
tessellation of space [8]. 2D tessellations and 2D space filling shapes are relatively well-understood. How-
ever, problems related to 3D tessellations and space filling shapes are still interesting and have applications
in a wide range of areas from chemistry and biology to engineering and architecture [11].

A well-known anecdote demonstrates the difficulty of 3D tessellations is that Aristotle claimed that the
tetrahedron can fill space and many people tried to prove his claim [13] despite the fact that the cube is the
only space filling Platonic solid [5]. Goldberg exhaustively cataloged many of known space-filling polyhedra
with a series of papers from 1972 to 1982 such as [6]. There are only eight space-filling convex polyhedra
and only five of them have regular faces, namely the triangular prism, hexagonal prism, cube, truncated
octahedron [16, 15], and Johnson solid gyrobifastigium [10, 1]. It is also interesting that five of these eight
space filling shapes are ”primary” parallelohedra [3], namely cube, hexagonal prism, rhombic dodecahedron,
elongated dodecahedron, and truncated octahedron.

We have recently developed an approach to construct and eventually design a new class of tilings in
3-space. Our approach is based on interpolation a stack of planar tiles whose dual tilings are Delaunay
diagrams. We construct control curves that interpolate one Delaunay vertex of each planar tile. Voronoi



decomposition of the volume using these control curves as Voronoi sites gives us lofted interpolation of
original faces. This, combined with the use of wallpaper symmetries allows for the design of the new class
of space filling shapes in 3-space. In the poster exhibition, we will demonstrate 3D printed examples of this
new class of shapes (See Figures 1, 2 and, 4 ).

(a) A Delau-
nay Loft.

(b) Two tiles. (c) Three tiles. (d) Ten tiles. (e) Ten tiles.

Figure 2: Another example of single space filling Delaunay Loft tile. This tile is created as an interpolation
of three layers of tilings, namely (1) a regular hexagonal; (2) a square and; (3) another regular hexagonal
tilings, which is a translation of the first hexagonal tiling. It is interesting to note that the interpolating
control curves are straight lines. Regular rectangular tiling in the middle is just an automatically produced
byproduct.

2 Related Work

Our approach, which can be considered as a generalization of parallelohedra, is inspired by a recent discovery
by Gómez-Gálvez et al. who observed a simple polyhedral form, which they call ”scutoids”, commonly exist
in epithelial cells in the formation of thin skin layers [7]. They demonstrated that having this polyhedral form
in addition to prisms provides a natural solution to three-dimensional packing of epithelial cells. In skin cells,
the top (apical) and bottom (basal) surfaces of the cellular structure are Voronoi patterns (as these occur
frequently due to physical constraints) [9]. Gómez-Gálvez et al. observed that the fundamental problem of
packing occurs when the polygonal shapes at apical and basal surfaces do not match (e.g. pentagonal top
and hexagonal bottom) leading to topological shift and resulting in scutoids.

The literature on this discovery shows the occurrence of scutoids and provides some statistical informa-
tion of when and how they form [7, 2] (See 3). The reason why these shapes occur in nature is that they
are the sole enablers for a space-filling packing on the skin cells. The scutoidal shapes can be considered
as interpolation of 2D tiling patterns, that usually consists of hexagons and pentagons that appear on many
natural structures. Interpolation is obtained by edge-collapse and vertex-split operations.

(a) Two views of a scutoid. (b) Two views of a Delaunay loft.

Figure 3: The comparison of scutoids with our Delaunay Lofts. The original scutoids usually depicted using
straight edges as shown in this visual representation. Delaunay Lofts, on the other hand, (1) have curved
edges and (2) can fill space.

The Figure 3a demonstrates a usual depiction of the originally discovered scutoid structures obtained



by edge-collapse or vertex-split operations between pentagons and hexagonal faces. This view results in
non-planar pentagons or hexagons with straight boundaries as shown in the Figure 3a, but it does not provide
any well-defined process to fill inside of these non-planar faces. Our approach to obtaining scutoid-like
structures is to use 3D Voronoi decomposition using a set of curves as Voronoi sites. If this set of curves
are closed under symmetry operations, the resulted Voronoi shapes are guaranteed to be space filling. It
is interesting to note that this approach is also in sync with Delaunay’s original intention for the use of
Delaunay diagrams. Delaunay was, in fact, the first to use symmetry operations on points (instead of curves)
and Voronoi diagrams to produce space filling polyhedra, which he called Stereohedra [4, 12]. Our approach
can be viewed as an extension of his idea to curves. We, therefore, called our approach Delaunay Lofting.

3 Methodology and Implementation

When using points, construction of 3D Voronoi decomposition is relatively simple since distances to points
guarantee to produce planar faces. On the other hands, when we use curves or even straight lines Voronoi
decomposition can produce curved faces, which, in fact, makes this method interesting. However, having
curved faces significantly complicates the algorithms to construct 3D Voronoi decomposition in high resolu-
tion. We, therefore, choose to deal with a subset of this general problem.

We decompose thin rectangular structures that consist of a discrete set of z-constant planar layers. We
also choose the control curves in the form of (xi = fi,x(z),yi = fi,y(z)), where i = 0,1, . . . ,n. This constraint
guarantees that each curve intersects with each layer only once. We also use a specific distance function
to further simplify the process into a set of 2D Voronoi decomposition. Based on these simplifications, the
general process that consists of the following steps: (1) Discretize the rectangular prism with N number of
constant z planes, which we call layers. (2) Design M number of curves inside of the rectangular domain. (3)
Find the intersection of curves with intermediate layers. (4) For each layer, compute its Voronoi partitioning
by using intersection points with that particular layer as Voronoi sites1. (5) Offset each Voronoi polygon
the same amount using Minkowski difference 2. (6) Treat each vertex as a single manifold and insert edges
between consecutive vertices 3. (7) Insert edges between closest vertices in consecutive layers based on face
normal.

This process automatically creates the Delaunay Lofts and the resulting structures resemble scutoids
with curved edges and faces. To produce space filling tiles, control curves must be closed under symmetry
operations and each rectangle must be a regular domain, which topologically forms a 2-toroid. To easily
produce control curves that are closed under symmetry operations, we interpolate 2D Delaunay diagrams
with wallpaper symmetries. If the top and bottom tilings are rigid transformations of each other, this process
produces 3D space filling shapes. In the 3D printed examples shown in Figures 1, 2 and, 4, control curves are
just straight lines that interpolates top and bottom Delaunay vertices. We also have examples that interpolate
more than two tiles, one such example is shown in Figure 3b, but we have not printed those yet.
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(a) Two views of a two 3-Space Filling 2.5
Tiles.

(b) Three tiles. (c) Three tiles. (d) Four tiles. (e) Four tiles sepa-
rated.
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